Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Eur J Nutr ; 63(2): 377-396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989797

RESUMO

PURPOSE: To investigate the role of adiposity in the associations between ultra-processed food (UPF) consumption and head and neck cancer (HNC) and oesophageal adenocarcinoma (OAC) in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS: Our study included 450,111 EPIC participants. We used Cox regressions to investigate the associations between the consumption of UPFs and HNC and OAC risk. A mediation analysis was performed to assess the role of body mass index (BMI) and waist-to-hip ratio (WHR) in these associations. In sensitivity analyses, we investigated accidental death as a negative control outcome. RESULTS: During a mean follow-up of 14.13 ± 3.98 years, 910 and 215 participants developed HNC and OAC, respectively. A 10% g/d higher consumption of UPFs was associated with an increased risk of HNC (hazard ratio [HR] = 1.23, 95% confidence interval [CI] 1.14-1.34) and OAC (HR = 1.24, 95% CI 1.05-1.47). WHR mediated 5% (95% CI 3-10%) of the association between the consumption of UPFs and HNC risk, while BMI and WHR, respectively, mediated 13% (95% CI 6-53%) and 15% (95% CI 8-72%) of the association between the consumption of UPFs and OAC risk. UPF consumption was positively associated with accidental death in the negative control analysis. CONCLUSIONS: We reaffirmed that higher UPF consumption is associated with greater risk of HNC and OAC in EPIC. The proportion mediated via adiposity was small. Further research is required to investigate other mechanisms that may be at play (if there is indeed any causal effect of UPF consumption on these cancers).


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias de Cabeça e Pescoço , Humanos , Adiposidade , Estudos Prospectivos , Alimento Processado , Análise de Mediação , Obesidade , Adenocarcinoma/epidemiologia , Adenocarcinoma/etiologia , Fast Foods/efeitos adversos , Dieta , Manipulação de Alimentos
2.
medRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873386

RESUMO

High body mass index (BMI) is a causal risk factor for endometrial cancer but the tumor molecular mechanisms affected by adiposity and their therapeutic relevance remain poorly understood. Here we characterize the tumor multi-omic landscape of endometrial cancers that have developed on a background of lifelong germline genetic exposure to elevated BMI. We built a polygenic score (PGS) for BMI in women using data on independent, genome-wide significant variants associated with adult BMI in 434,794 women. We performed germline (blood) genotype quality control and imputation on data from 354 endometrial cancer cases from The Cancer Genome Atlas (TCGA). We assigned each case in this TCGA cohort their genetically predicted life-course BMI based on the BMI PGS. Multivariable generalized linear models adjusted for age, stage, microsatellite status and genetic principal components were used to test for associations between the BMI germline PGS and endometrial cancer tumor genome-wide genomic, transcriptomic, proteomic, epigenomic and immune traits in TCGA. High BMI germline PGS was associated with (i) upregulated tumor gene expression in the IL6-JAK-STAT3 pathway (FDR=4.2×10-7); (ii) increased estimated intra-tumor activated mast cell infiltration (FDR=0.008); (iii) increased single base substitution (SBS) mutational signatures 1 (FDR=0.03) and 5 (FDR=0.09) and decreased SBS13 (FDR=0.09), implicating age-related and APOBEC mutagenesis, respectively; and (iv) decreased tumor EGFR protein expression (FDR=0.07). Alterations in IL6-JAK-STAT3 signaling gene and EGFR protein expression were, in turn, significantly associated with both overall survival and progression-free interval. Thus, we integrated germline and somatic data using a novel study design to identify associations between genetically predicted lifelong exposure to higher BMI and potentially actionable endometrial cancer tumor molecular features. These associations inform our understanding of how high BMI may influence the development and progression of this cancer, impacting endometrial tumor biology and clinical outcomes.

3.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697338

RESUMO

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Assuntos
Asma , Metilação de DNA , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Carcinogênese , Inflamação , Estações do Ano
4.
Nat Commun ; 14(1): 5200, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626025

RESUMO

Human height is strongly influenced by genetics but the contribution of modifiable epigenetic factors is under-explored, particularly in low and middle-income countries (LMIC). We investigate links between blood DNA methylation and child height in four LMIC cohorts (n = 1927) and identify a robust association at three CpGs in the suppressor of cytokine signaling 3 (SOCS3) gene which replicates in a high-income country cohort (n = 879). SOCS3 methylation (SOCS3m)-height associations are independent of genetic effects. Mendelian randomization analysis confirms a causal effect of SOCS3m on height. In longitudinal analysis, SOCS3m explains a maximum 9.5% of height variance in mid-childhood while the variance explained by height polygenic risk score increases from birth to 21 years. Children's SOCS3m is associated with prenatal maternal folate and socio-economic status. In-vitro characterization confirms a regulatory effect of SOCS3m on gene expression. Our findings suggest epigenetic modifications may play an important role in driving child height in LMIC.


Assuntos
Metilação de DNA , Proteínas Supressoras da Sinalização de Citocina , Feminino , Gravidez , Humanos , Criança , Metilação de DNA/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Epigênese Genética , Epigenômica , Citocinas , Proteína 3 Supressora da Sinalização de Citocinas/genética
7.
Lancet Child Adolesc Health ; 7(8): 532-543, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327798

RESUMO

BACKGROUND: Childhood adversity is a potent determinant of health across development and is associated with altered DNA methylation signatures, which might be more common in children exposed during sensitive periods in development. However, it remains unclear whether adversity has persistent epigenetic associations across childhood and adolescence. We aimed to examine the relationship between time-varying adversity (defined through sensitive period, accumulation of risk, and recency life course hypotheses) and genome-wide DNA methylation, measured three times from birth to adolescence, using data from a prospective, longitudinal cohort study. METHODS: We first investigated the relationship between the timing of exposure to childhood adversity between birth and 11 years and blood DNA methylation at age 15 years in the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective cohort study. Our analytic sample included ALSPAC participants with DNA methylation data and complete childhood adversity data between birth and 11 years. We analysed seven types of adversity (caregiver physical or emotional abuse, sexual or physical abuse [by anyone], maternal psychopathology, one-adult households, family instability, financial hardship, and neighbourhood disadvantage) reported by mothers five to eight times between birth and 11 years. We used the structured life course modelling approach (SLCMA) to identify time-varying associations between childhood adversity and adolescent DNA methylation. Top loci were identified using an R2 threshold of 0·035 (ie, ≥3·5% of DNA methylation variance explained by adversity). We attempted to replicate these associations using data from the Raine Study and Future of Families and Child Wellbeing Study (FFCWS). We also assessed the persistence of adversity-DNA methylation associations we previously identified from age 7 blood DNA methylation into adolescence and the influence of adversity on DNA methylation trajectories from ages 0-15 years. FINDINGS: Of 13 988 children in the ALSPAC cohort, 609-665 children (311-337 [50-51%] boys and 298-332 [49-50%] girls) had complete data available for at least one of the seven childhood adversities and DNA methylation at 15 years. Exposure to adversity was associated with differences in DNA methylation at 15 years for 41 loci (R2 ≥0·035). Sensitive periods were the most often selected life course hypothesis by the SLCMA. 20 (49%) of 41 loci were associated with adversities occurring between age 3 and 5 years. Exposure to one-adult households was associated with differences in DNA methylation at 20 [49%] of 41 loci, exposure to financial hardship was associated with changes at nine (22%) loci, and physical or sexual abuse was associated with changes at four (10%) loci. We replicated the direction of associations for 18 (90%) of 20 loci associated with exposure to one-adult household using adolescent blood DNA methylation from the Raine Study and 18 (64%) of 28 loci using saliva DNA methylation from the FFCWS. The directions of effects for 11 one-adult household loci were replicated in both cohorts. Differences in DNA methylation at 15 years were not present at 7 years and differences identified at 7 years were no longer apparent by 15 years. We also identified six distinct DNA methylation trajectories from these patterns of stability and persistence. INTERPRETATION: These findings highlight the time-varying effect of childhood adversity on DNA methylation profiles across development, which might link exposure to adversity to potential adverse health outcomes in children and adolescents. If replicated, these epigenetic signatures could ultimately serve as biological indicators or early warning signs of initiated disease processes, helping identify people at greater risk for the adverse health consequences of childhood adversity. FUNDING: Canadian Institutes of Health Research, Cohort and Longitudinal Studies Enhancement Resources, EU's Horizon 2020, US National Institute of Mental Health.


Assuntos
Experiências Adversas da Infância , Masculino , Adulto , Feminino , Criança , Humanos , Adolescente , Recém-Nascido , Lactente , Pré-Escolar , Estudos Longitudinais , Estudos Prospectivos , Canadá , Pais , Epigênese Genética
8.
Diabetologia ; 66(7): 1247-1259, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202507

RESUMO

AIMS/HYPOTHESIS: Several studies have identified associations between type 2 diabetes and DNA methylation (DNAm). However, the causal role of these associations remains unclear. This study aimed to provide evidence for a causal relationship between DNAm and type 2 diabetes. METHODS: We used bidirectional two-sample Mendelian randomisation (2SMR) to evaluate causality at 58 CpG sites previously detected in a meta-analysis of epigenome-wide association studies (meta-EWAS) of prevalent type 2 diabetes in European populations. We retrieved genetic proxies for type 2 diabetes and DNAm from the largest genome-wide association study (GWAS) available. We also used data from the Avon Longitudinal Study of Parents and Children (ALSPAC, UK) when associations of interest were not available in the larger datasets. We identified 62 independent SNPs as proxies for type 2 diabetes, and 39 methylation quantitative trait loci as proxies for 30 of the 58 type 2 diabetes-related CpGs. We applied the Bonferroni correction for multiple testing and inferred causality based on p<0.001 for the type 2 diabetes to DNAm direction and p<0.002 for the opposing DNAm to type 2 diabetes direction in the 2SMR analysis. RESULTS: We found strong evidence of a causal effect of DNAm at cg25536676 (DHCR24) on type 2 diabetes. An increase in transformed residuals of DNAm at this site was associated with a 43% (OR 1.43, 95% CI 1.15, 1.78, p=0.001) higher risk of type 2 diabetes. We inferred a likely causal direction for the remaining CpG sites assessed. In silico analyses showed that the CpGs analysed were enriched for expression quantitative trait methylation sites (eQTMs) and for specific traits, dependent on the direction of causality predicted by the 2SMR analysis. CONCLUSIONS/INTERPRETATION: We identified one CpG mapping to a gene related to the metabolism of lipids (DHCR24) as a novel causal biomarker for risk of type 2 diabetes. CpGs within the same gene region have previously been associated with type 2 diabetes-related traits in observational studies (BMI, waist circumference, HDL-cholesterol, insulin) and in Mendelian randomisation analyses (LDL-cholesterol). Thus, we hypothesise that our candidate CpG in DHCR24 may be a causal mediator of the association between known modifiable risk factors and type 2 diabetes. Formal causal mediation analysis should be implemented to further validate this assumption.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2 , Criança , Humanos , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudos Longitudinais , Estudo de Associação Genômica Ampla , Colesterol
9.
Commun Med (Lond) ; 3(1): 37, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922542

RESUMO

BACKGROUND: Saliva is easily obtainable non-invasively and potentially suitable for detecting both current and previous SARS-CoV-2 infection, but there is limited evidence on the utility of salivary antibody testing for community surveillance. METHODS: We established 6 ELISAs detecting IgA and IgG antibodies to whole SARS-CoV-2 spike protein, to its receptor binding domain region and to nucleocapsid protein in saliva. We evaluated diagnostic performance, and using paired saliva and serum samples, correlated mucosal and systemic antibody responses. The best-performing assays were field-tested in 20 household outbreaks. RESULTS: We demonstrate in test accuracy (N = 320), spike IgG (ROC AUC: 95.0%, 92.8-97.3%) and spike IgA (ROC AUC: 89.9%, 86.5-93.2%) assays to discriminate best between pre-pandemic and post COVID-19 saliva samples. Specificity was 100% in younger age groups (0-19 years) for spike IgA and IgG. However, sensitivity was low for the best-performing assay (spike IgG: 50.6%, 39.8-61.4%). Using machine learning, diagnostic performance was improved when a combination of tests was used. As expected, salivary IgA was poorly correlated with serum, indicating an oral mucosal response whereas salivary IgG responses were predictive of those in serum. When deployed to household outbreaks, antibody responses were heterogeneous but remained a reliable indicator of recent infection. Intriguingly, unvaccinated children without confirmed infection showed evidence of exposure almost exclusively through specific IgA responses. CONCLUSIONS: Through robust standardisation, evaluation and field-testing, this work provides a platform for further studies investigating SARS-CoV-2 transmission and mucosal immunity with the potential for expanding salivo-surveillance to other respiratory infections in hard-to-reach settings.


If a person has been previously infected with SARS-CoV-2 they will produce specific proteins, called antibodies. These are present in the saliva and blood. Saliva is easier to obtain than blood, so we developed and evaluated six tests that detect SARS-CoV-2 antibodies in saliva in children and adults. Some tests detected antibodies to a particular protein made by SARS-CoV-2 called the spike protein, and these tests worked best. The most accurate results were obtained by using a combination of tests. Similar tests could also be developed to detect other respiratory infections which will enable easier identification of infected individuals.

10.
BMC Med ; 21(1): 17, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627699

RESUMO

BACKGROUND: Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing early-life exposures and subsequent diseases, is a possible mechanism underlying early-life programming. METHODS: Here, a meta-analysis of Illumina HumanMethylation 450K/EPIC-array associations of cord blood DNA methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with reference to WHO growth charts) was conducted in six European-based child cohorts (ALSPAC, ENVIRONAGE, Generation XXI, INMA, Piccolipiù, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the Bohlin epigenetic clock) with rapid weight growth was also explored via meta-analysis. Follow-up analyses of identified DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in childhood (between 4 and 8 years), and comparison with previous findings. RESULTS: Forty-seven CpGs were associated with rapid weight growth at suggestive p-value <1e-05 and, among them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the genome-wide significance level (p-value <1.25e-07). Sixteen differentially methylated regions (DMRs) were identified as associated with rapid weight growth at false discovery rate (FDR)-adjusted/Siddak p-values < 0.01. Gestational age acceleration was associated with decreasing risk of rapid weight growth (p-value = 9.75e-04). Identified DNA methylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs (N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), including long non-coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of CpGs previously reported associated with birthweight. CONCLUSIONS: Our findings provide evidence of the association between cord blood DNA methylation and rapid weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportunities for early prevention.


Assuntos
Epigenoma , Obesidade Infantil , Gravidez , Feminino , Humanos , Criança , Epigenoma/genética , Sangue Fetal , Obesidade Infantil/genética , Metilação de DNA/genética , Peso ao Nascer/genética , Ilhas de CpG , Estudo de Associação Genômica Ampla , Fatores de Transcrição Kruppel-Like/genética
11.
Arthritis Care Res (Hoboken) ; 75(3): 674-681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34748291

RESUMO

OBJECTIVES: Observational studies report mixed findings regarding the association between vitamin D and juvenile idiopathic arthritis (JIA) incidence or activity; however, such studies are susceptible to considerable bias. Because low vitamin D levels are common within the general population and easily corrected, there is potential public health benefit in identifying a causal association between vitamin D insufficiency and JIA incidence. To limit bias due to confounding and reverse causation, we examined the causal effect of the major circulating form of vitamin D, 25-hydroxy vitamin D (25-[OH]D), on JIA incidence using Mendelian randomization (MR). METHODS: In this 2-sample MR analysis, we used summary level data from the largest and most recent genome-wide association study of 25-(OH)D levels (sample size 443,734), alongside summary data from 2 JIA genetic studies (sample sizes 15,872 and 12,501), all from European populations. To test and account for potential bias due to pleiotropy, we employed multiple MR methods and sensitivity analyses. RESULTS: We found no evidence of a causal relationship between genetically predicted 25-(OH)D levels and JIA incidence (odds ratio 1.00 [95% confidence interval (95% CI) 0.76, 1.33] per SD increase in standardized natural-log transformed 25-[OH]D levels). This estimate was consistent across all methods tested. Additionally, there was no evidence that genetically predicted JIA causally influences 25-(OH)D levels (-0.002 SD change in standardized natural-log transformed 25-[OH]D levels per doubling odds in genetically predicted JIA [95% CI -0.006, 0.002]). CONCLUSION: Given the lack of a causal relationship between 25-(OH)D levels and JIA, population level vitamin D supplementation is unlikely to reduce JIA incidence.


Assuntos
Artrite Juvenil , Humanos , Artrite Juvenil/diagnóstico , Artrite Juvenil/epidemiologia , Artrite Juvenil/genética , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , Vitamina D , Polimorfismo de Nucleotídeo Único
12.
Nat Commun ; 13(1): 7816, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535946

RESUMO

Identifying genomic regions pertinent to complex traits is a common goal of genome-wide and epigenome-wide association studies (GWAS and EWAS). GWAS identify causal genetic variants, directly or via linkage disequilibrium, and EWAS identify variation in DNA methylation associated with a trait. While GWAS in principle will only detect variants due to causal genes, EWAS can also identify genes via confounding, or reverse causation. We systematically compare GWAS (N > 50,000) and EWAS (N > 4500) results of 15 complex traits. We evaluate if the genes or gene ontology terms flagged by GWAS and EWAS overlap, and find substantial overlap for diastolic blood pressure, (gene overlap P = 5.2 × 10-6; term overlap P = 0.001). We superimpose our empirical findings against simulated models of varying genetic and epigenetic architectures and observe that in most cases GWAS and EWAS are likely capturing distinct genesets. Our results indicate that GWAS and EWAS are capturing different aspects of the biology of complex traits.


Assuntos
Epigenoma , Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Epigênese Genética , Herança Multifatorial , Metilação de DNA
13.
Pediatr Rheumatol Online J ; 20(1): 105, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403012

RESUMO

BACKGROUND: There is growing concern about the long-term cardiovascular health of patients with juvenile idiopathic arthritis (JIA). In this study we assessed the association between JIA polygenic risk and cardiovascular phenotypes (cardiovascular risk factors, early atherosclerosis/arteriosclerosis markers, and cardiac structure and function measures) early in life. METHODS: JIA polygenic risk scores (PRSs) were constructed for 2,815 participants from the Avon Longitudinal Study of Parents and Children, using the single nucleotide polymorphism (SNP) weights from the most recent JIA genome wide association study. The association between JIA PRSs and cardiovascular phenotypes at age 24 years was assessed using linear and logistic regression. For outcomes with strong evidence of association, further analysis was undertaken to examine how early in life (from age seven onwards) these associations manifest. RESULTS: The JIA PRS was associated with diastolic blood pressure (ß 0.062, 95% CI 0.026 to 0.099, P = 0.001), insulin (ß 0.050, 95% CI 0.011 to 0.090, P = 0.013), insulin resistance index (HOMA2_IR, ß 0.054, 95% CI 0.014 to 0.095, P = 0.009), log hsCRP (ß 0.053, 95% CI 0.011 to 0.095, P = 0.014), waist circumference (ß 0.041, 95% CI 0.007 to 0.075, P = 0.017), fat mass index (ß 0.049, 95% CI 0.016 to 0.083, P = 0.004) and body mass index (ß 0.046, 95% CI 0.011 to 0.081, P = 0.010). For anthropometric measures and diastolic blood pressure, there was suggestive evidence of association with JIA PRS from age seven years. The findings were consistent across multiple sensitivity analyses. CONCLUSIONS: Genetic liability to JIA is associated with multiple cardiovascular risk factors, supporting the hypothesis of increased cardiovascular risk in JIA. Our findings suggest that cardiovascular risk is a core feature of JIA, rather than secondary to the disease activity/treatment, and that cardiovascular risk counselling should form part of patient care.


Assuntos
Artrite Juvenil , Humanos , Artrite Juvenil/genética , Estudo de Associação Genômica Ampla , Estudos Longitudinais , Fenótipo , Fatores de Risco de Doenças Cardíacas
14.
Breast Cancer Res ; 24(1): 66, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209141

RESUMO

BACKGROUND: Breast cancer (BC) has the highest cancer incidence and mortality in women worldwide. Observational epidemiological studies suggest a positive association between testosterone, estradiol, dehydroepiandrosterone sulphate (DHEAS) and other sex steroid hormones with postmenopausal BC. We used a two-sample Mendelian randomization analysis to investigate this association. METHODS: Genetic instruments for nine sex steroid hormones and sex hormone-binding globulin (SHBG) were obtained from genome-wide association studies (GWAS) of UK Biobank (total testosterone (TT) N: 230,454, bioavailable testosterone (BT) N: 188,507 and SHBG N: 189,473), The United Kingdom Household Longitudinal Study (DHEAS N: 9722), the LIFE-Adult and LIFE-Heart cohorts (estradiol N: 2607, androstenedione N: 711, aldosterone N: 685, progesterone N: 1259 and 17-hydroxyprogesterone N: 711) and the CORtisol NETwork (CORNET) consortium (cortisol N: 25,314). Outcome GWAS summary statistics were obtained from the Breast Cancer Association Consortium (BCAC) for overall BC risk (N: 122,977 cases and 105,974 controls) and subtype-specific analyses. RESULTS: We found that a standard deviation (SD) increase in TT, BT and estradiol increased the risk of overall BC (OR 1.14, 95% CI 1.09-1.21, OR 1.19, 95% CI 1.07-1.33 and OR 1.03, 95% CI 1.01-1.06, respectively) and ER + BC (OR 1.19, 95% CI 1.12-1.27, OR 1.25, 95% CI 1.11-1.40 and OR 1.06, 95% CI 1.03-1.09, respectively). An SD increase in DHEAS also increased ER + BC risk (OR 1.09, 95% CI 1.03-1.16). Subtype-specific analyses showed similar associations with ER+ expressing subtypes: luminal A-like BC, luminal B-like BC and luminal B/HER2-negative-like BC. CONCLUSIONS: TT, BT, DHEAS and estradiol increase the risk of ER+ type BCs similar to observational studies. Understanding the role of sex steroid hormones in BC risk, particularly subtype-specific risks, highlights the potential importance of attempts to modify and/or monitor hormone levels in order to prevent BC.


Assuntos
Neoplasias da Mama , Globulina de Ligação a Hormônio Sexual , 17-alfa-Hidroxiprogesterona , Adulto , Aldosterona , Androstenodiona , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Sulfato de Desidroepiandrosterona , Estradiol , Feminino , Estudo de Associação Genômica Ampla , Hormônios Esteroides Gonadais , Humanos , Hidrocortisona , Estudos Longitudinais , Análise da Randomização Mendeliana , Progesterona , Testosterona
15.
Clin Epigenetics ; 14(1): 130, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243740

RESUMO

Ethnic differences in non-communicable disease risk have been described between individuals of South Asian and European ethnicity that are only partially explained by genetics and other known risk factors. DNA methylation is one underexplored mechanism that may explain differences in disease risk. Currently, there is little knowledge of how DNA methylation varies between South Asian and European ethnicities. This study characterised differences in blood DNA methylation between individuals of self-reported European and South Asian ethnicity from two UK-based cohorts: Southall and Brent Revisited and Born in Bradford. DNA methylation differences between ethnicities were widespread throughout the genome (n = 16,433 CpG sites, 3.4% sites tested). Specifically, 76% of associations were attributable to ethnic differences in cell composition with fewer effects attributable to smoking and genetic variation. Ethnicity-associated CpG sites were enriched for EWAS Catalog phenotypes including metabolites. This work highlights the need to consider ethnic diversity in epigenetic research.


Assuntos
Metilação de DNA , População Branca , Povo Asiático/genética , Humanos , Fatores de Risco , Reino Unido , População Branca/genética
16.
Clin Nutr ; 41(9): 1991-2002, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35964423

RESUMO

BACKGROUND & AIMS: Maternal diet during pregnancy is a modifiable behaviour which plays an important role in maternal, neonatal and child health outcomes. Thus, knowledge of predictors of dietary quality and dietary inflammatory potential in European countries may contribute to developing maternal diet-related public health policies that target specific at-risk populations in Europe. METHODS: We used harmonised data from >26,000 pregnant women enrolled in the ALSPAC, EDEN, Generation R, Lifeways, REPRO_PL, ROLO and SWS cohorts, as part of the ALPHABET consortium. Maternal dietary quality and inflammatory potential were assessed using the Dietary Approaches to Stop Hypertension (DASH) and the energy-adjusted Dietary Inflammatory Index (E-DII). We conducted an individual participant data meta-analysis to investigate the maternal sociodemographic, health and behavioural predictors of maternal diet before and during pregnancy. RESULTS: DASH and E-DII scores were moderately correlated: from -0.63 (95% CI: -0.66, -0.59) to -0.48 (95% CI: -0.49, -0.47) across cohorts. Higher maternal age, education, household income, and physical activity during pregnancy were associated with a better dietary quality and a more anti-inflammatory diet. Conversely, multiparity and smoking during pregnancy were associated with a poorer dietary quality and a more proinflammatory diet. Women with obesity had a poorer pregnancy dietary quality than women with a normal body mass index range. CONCLUSIONS: The results will help identify population subgroups who may benefit from targeted public health strategies and interventions aimed at improving women's dietary quality during pregnancy.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Complicações na Gravidez , Criança , Dieta , Feminino , Humanos , Recém-Nascido , Inflamação , Obesidade , Gravidez , Complicações na Gravidez/epidemiologia
17.
Psychoneuroendocrinology ; 144: 105854, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914392

RESUMO

BACKGROUND: Sensitive periods are developmental stages of heightened plasticity when life experiences, including exposure to childhood adversity, have the potential to exert more lasting impacts. Epigenetic mechanisms, including DNA methylation (DNAm), may provide a pathway through which adversity induces long-term biological changes. DNAm shifts may be more likely to occur during sensitive periods, especially within genes that regulate the timing of sensitive periods. Here, we investigated the possibility that childhood adversity during specific life stages is associated with DNAm changes in genes known to regulate the timing and duration of sensitive periods. METHODS: Genome-wide DNAm profiles came from the Avon Longitudinal Study of Parents and Children (n = 785). We first used principal component analysis (PCA) to summarize DNAm variation across 530 CpG sites mapped to the promoters of 58 genes previously-identified as regulating sensitive periods. Gene-level DNAm summaries were calculated for genes regulating sensitive period opening (ngenes = 15), closing (ngenes = 36), and expression (ngenes = 8). We then performed linear discriminant analysis (LDA) to test associations between seven types of parent-reported, time-varying measures of exposure to childhood adversity and DNAm principal components. To our knowledge, this is the first time LDA has been applied to analyze functionally grouped DNAm data to characterize associations between an environmental exposure and epigenetic differences. RESULTS: Suggestive evidence emerged for associations between sexual or physical abuse as well as financial hardship during middle childhood, and DNAm of genetic pathways regulating sensitive period opening and expression. However, no statistically significant associations were identified after multiple testing correction. CONCLUSIONS: Our gene set-based method combining PCA and LDA complements epigenome-wide approaches. Although our results were largely null, these findings provide a proof-of-concept for studying time-varying exposures and gene- or pathway-level epigenetic modifications.


Assuntos
Experiências Adversas da Infância , Criança , Metilação de DNA/genética , Epigênese Genética/genética , Humanos , Estudos Longitudinais
18.
Clin Epigenetics ; 14(1): 83, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790973

RESUMO

BACKGROUND: Sleep is important for healthy functioning in children. Numerous genetic and environmental factors, from conception onwards, may influence this phenotype. Epigenetic mechanisms such as DNA methylation have been proposed to underlie variation in sleep or may be an early-life marker of sleep disturbances. We examined if DNA methylation at birth or in school age is associated with parent-reported and actigraphy-estimated sleep outcomes in children. METHODS: We meta-analysed epigenome-wide association study results. DNA methylation was measured from cord blood at birth in 11 cohorts and from peripheral blood in children (4-13 years) in 8 cohorts. Outcomes included parent-reported sleep duration, sleep initiation and fragmentation problems, and actigraphy-estimated sleep duration, sleep onset latency and wake-after-sleep-onset duration. RESULTS: We found no associations between DNA methylation at birth and parent-reported sleep duration (n = 3658), initiation problems (n = 2504), or fragmentation (n = 1681) (p values above cut-off 4.0 × 10-8). Lower methylation at cg24815001 and cg02753354 at birth was associated with longer actigraphy-estimated sleep duration (p = 3.31 × 10-8, n = 577) and sleep onset latency (p = 8.8 × 10-9, n = 580), respectively. DNA methylation in childhood was not cross-sectionally associated with any sleep outcomes (n = 716-2539). CONCLUSION: DNA methylation, at birth or in childhood, was not associated with parent-reported sleep. Associations observed with objectively measured sleep outcomes could be studied further if additional data sets become available.


Assuntos
Metilação de DNA , Transtornos do Sono-Vigília , Epigênese Genética , Epigenoma , Humanos , Sono/genética , Transtornos do Sono-Vigília/genética
19.
Wellcome Open Res ; 7: 41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592546

RESUMO

Epigenome-wide association studies (EWAS) seek to quantify associations between traits/exposures and DNA methylation measured at thousands or millions of CpG sites across the genome. In recent years, the increase in availability of DNA methylation measures in population-based cohorts and case-control studies has resulted in a dramatic expansion of the number of EWAS being performed and published. To make this rich source of results more accessible, we have manually curated a database of CpG-trait associations (with p<1x10 -4) from published EWAS, each assaying over 100,000 CpGs in at least 100 individuals. From January 7, 2022, The EWAS Catalog contained 1,737,746 associations from 2,686 EWAS. This includes 1,345,398 associations from 342 peer-reviewed publications. In addition, it also contains summary statistics for 392,348 associations from 427 EWAS, performed on data from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Gene Expression Omnibus (GEO). The database is accompanied by a web-based tool and R package, giving researchers the opportunity to query EWAS associations quickly and easily, and gain insight into the molecular underpinnings of disease as well as the impact of traits and exposures on the DNA methylome. The EWAS Catalog data extraction team continue to update the database monthly and we encourage any EWAS authors to upload their summary statistics to our website. Details of how to upload data can be found here: http://www.ewascatalog.org/upload. The EWAS Catalog is available at http://www.ewascatalog.org.

20.
Am J Hum Genet ; 109(7): 1255-1271, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679866

RESUMO

Osteoarthritis is a complex degenerative joint disease. Here, we investigate matched genotype and methylation profiles of primary chondrocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate with 82% accuracy in independent data. We report a genome-wide methylation quantitative trait locus (mQTL) map of articular cartilage and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metilação de DNA/genética , Epigenoma , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA